Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675640

RESUMO

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Assuntos
Chalconas , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Humanos , Linhagem Celular Tumoral , Plasmodium falciparum/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
2.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297894

RESUMO

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Chalconas , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Inibidores de Histona Desacetilases , Quinazolinas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Histona Desacetilases/metabolismo , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
3.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208952

RESUMO

For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7-18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.


Assuntos
Antineoplásicos , Chalconas , Inibidores de Ciclo-Oxigenase 2 , Proteínas de Neoplasias , Neoplasias , Inibidores de Proteínas Quinases , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Estrutura Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
4.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056779

RESUMO

The potential of natural and synthetic chalcones as therapeutic leads against different pathological conditions has been investigated for several years, and this class of compounds emerged as a privileged chemotype due to its interesting anti-inflammatory, antimicrobial, antiviral, and anticancer properties. The objective of our study was to contribute to the investigation of this class of natural products as anti-leishmanial agents. We aimed at investigating the structure-activity relationships of the natural chalcone lophirone E, characterized by the presence of benzofuran B-ring, and analogues on anti-leishmania activity. Here we describe an effective synthetic strategy for the preparation of the natural chalcone lophirone E and its application to the synthesis of a small set of chalcones bearing different substitution patterns at both the A and heterocyclic B rings. The resulting compounds were investigated for their activity against Leishmania infantum promastigotes disclosing derivatives 1 and 28a,b as those endowed with the most interesting activities (IC50 = 15.3, 27.2, 15.9 µM, respectively). The synthetic approaches here described and the early SAR investigations highlighted the potential of this class of compounds as antiparasitic hits, making this study worthy of further investigation.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Benzofuranos/química , Biflavonoides/síntese química , Chalconas/síntese química , Indóis/química , Biflavonoides/química , Chalconas/química , Fenômenos Químicos , Técnicas de Química Sintética , Humanos , Leishmania infantum , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Enzyme Inhib Med Chem ; 37(1): 339-354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34979843

RESUMO

α-Fluorinated chalcones were prepared and evaluated for their cell growth inhibitory properties against six human cancer cell lines. The most potent chalcone 4c demonstrated excellent selective toxicity against cancer cells versus normal human cells, with IC50 values at nanomolar concentration ranges against 5 cancer cell lines. A further study revealed that 4c could bind to the colchicine site of tubulin, disrupt the cell microtubule networks, and effectively inhibit tubulin polymerisation. Cellular-based mechanism studies elucidated that 4c arrested MGC-803 cell cycle at G2/M phase. In addition, 4c dose-dependently caused Caspase-induced apoptosis of MGC-803 cells through mitochondrial dysfunction. Notably, compound 4c was found to inhibit the HUVECs tube formation, migration, and invasion in vitro. Furthermore, our data suggested that treatment with 4c significantly reduced MGC-803 cells metastasis and proliferation in vitro. Overall, this work showed that chalcone hybrid 4c is a potent inhibitor of tubulin assembly with prominent anti-angiogenesis and anti-cancer properties.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Chalconas/farmacologia , Colchicina/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Estrutura Molecular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
6.
J Enzyme Inhib Med Chem ; 37(1): 189-201, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894967

RESUMO

Novel halogenated phenoxychalcones 2a-f and their corresponding N-acetylpyrazolines 3a-f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Citotoxinas/farmacologia , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Citotoxinas/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Halogenação , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Chem Biol Interact ; 351: 109734, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34742685

RESUMO

Malignant melanoma has a low incidence, but is the most lethal type of skin cancer. Studies have shown that dibenzoylmethanes (DBMs) have interesting biological activities, including antineoplastic properties. These findings led us to investigate whether news DBM derivatives exert antitumor effects against skin cancers. In a previous study, we found that 1,3-diphenyl-2-benzyl-1,3-propanedione (DPBP) has high in vitro antineoplastic activity against murine B16F10 melanoma cells, with an IC50 of 6.25 µg/mL. In the current study, we used transdermal and topical formulations of DPBP to evaluate its activity and molecular mechanism of action in a murine model of melanoma. The compound induces tumor cell death with high selectivity (selectivity index of 41.94) by triggering apoptosis through intrinsic and extrinsic pathways. DPBP treatment reduced tumor volume as well as serum VEGF-A and uric acid levels. Hepatomegaly and nephrotoxicity were not observed at the tested doses. Histopathological analysis of sentinel lymph nodes revealed no evidence of metastases. According to the observed data, the DPBP compound was effective for the topical treatment of melanoma cancer, suggesting that it acts as a chemotherapeutic or chemopreventive agent.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Chalconas/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Chalconas/síntese química , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
8.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771049

RESUMO

BACKGROUND: Panduratin A is a bioactive cyclohexanyl chalcone exhibiting several pharmacological activities, such as anti-inflammatory, anti-oxidative, and anti-cancer activities. Recently, the nephroprotective effect of panduratin A in cisplatin (CDDP) treatment was revealed. The present study examined the potential of certain compounds derived from panduratin A to protect against CDDP-induced nephrotoxicity. METHODS: Three derivatives of panduratin A (DD-217, DD-218, and DD-219) were semi-synthesized from panduratin A. We investigated the effects and corresponding mechanisms of the derivatives of panduratin A for preventing nephrotoxicity of CDDP in both immortalized human renal proximal tubular cells (RPTEC/TERT1 cells) and mice. RESULTS: Treating the cell with 10 µM panduratin A significantly reduced the viability of RPTEC/TERT1 cells compared to control (panduratin A: 72% ± 4.85%). Interestingly, DD-217, DD-218, and DD-219 at the same concentration did not significantly affect cell viability (92% ± 8.44%, 90% ± 7.50%, and 87 ± 5.2%, respectively). Among those derivatives, DD-218 exhibited the most protective effect against CDDP-induced renal proximal tubular cell apoptosis (control: 57% ± 1.23%; DD-218: 19% ± 10.14%; DD-219: 33% ± 14.06%). The cytoprotective effect of DD-218 was mediated via decreases in CDDP-induced mitochondria dysfunction, intracellular reactive oxygen species (ROS) generation, activation of ERK1/2, and cleaved-caspase 3 and 7. In addition, DD-218 attenuated CDDP-induced nephrotoxicity by a decrease in renal injury and improved in renal dysfunction in C57BL/6 mice. Importantly, DD-218 did not attenuate the anti-cancer efficacy of CDDP in non-small-cell lung cancer cells or colon cancer cells. CONCLUSIONS: This finding suggests that DD-218, a derivative of panduratin A, holds promise as an adjuvant therapy in patients receiving CDDP.


Assuntos
Chalconas/farmacologia , Cisplatino/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Técnicas de Química Sintética , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Asian Pac J Cancer Prev ; 22(10): 3393-3404, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711017

RESUMO

BACKGROUND: Cancer is a significant health problem around the world and one of the leading causes of human death. The need for novel, selective and non-toxic anti-cancer agents is still urging. AIM OF THE WORK: to investigate the anti-proliferative and pro-apoptotic effects of the synthesized ciprofloxacin 3,4,5 tri-methoxy chalcone hybrid (CCH) on the HepG2 hepatocellular carcinoma and MCF7 breast carcinoma cell lines. MATERIALS AND METHODS: HepG2 and MCF7cell lines were treated with CCH. Cell viability and cell cycle analysis were performed. Protein and mRNA expression levels of P53, COX-2 and TNF-α were analyzed by western blotting and RT-PCR respectively. RESULTS: CCH caused concentration and time-dependent reduction in the viability of human HepG2 and MCF7 cells, pre-G1 apoptosis and cell cycle arrest at G2/M stage, significantly higher P53 and TNF-α mRNA and protein expression levels but significantly lower COX2 mRNA and protein expression levels. CONCLUSION: CCH showed obvious anti-proliferative and apoptosis-inducing activities in both cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Ciprofloxacina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Ciprofloxacina/síntese química , Ciclo-Oxigenase 2/metabolismo , Combinação de Medicamentos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Bioorg Chem ; 116: 105315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496319

RESUMO

Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.


Assuntos
Acetofenonas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Acetofenonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Chem Biodivers ; 18(11): e2100341, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510699

RESUMO

Fifteen chalcone derivatives 3a-3o were synthesized, and evaluated as multifunctional agents against Alzheimer's disease. In vitro studies revealed that these compounds inhibited self-induced Aß1-42 aggregation effectively ranged from 45.9-94.5 % at 20 µM, and acted as potential antioxidants. Their structure-activity relationships were summarized. In particular, (2E)-3-[4-(dimethylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one (3g) exhibited an excellent inhibitory activity of 94.5 % at 20 µM, and it could disassemble the self-induced Aß1-42 aggregation fibrils with ratio of 57.1 % at 20 µM concentration. In addition, compound 3g displayed good chelating ability for Cu2+ , and could effectively inhibit and disaggregate Cu2+ -induced Aß aggregation. Moreover, compound 3g exerted low cytotoxicity, significantly reversed Aß1-42 -induced SH-SY5Y cell damage. More importantly, compound 3g remarkably ameliorated scopolamine-induced memory impairment in mice. In summary, all the results revealed compound 3g was a potential multifunctional agent for AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Chalconas/farmacologia , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Cobre/farmacologia , Humanos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Escopolamina , Células Tumorais Cultivadas
12.
Biotechnol Bioeng ; 118(11): 4402-4413, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355386

RESUMO

C-glycosyltransferase (CGT) and sucrose synthase (SuSy), each fused to the cationic binding module Zbasic2 , were co-immobilized on anionic carrier (ReliSorb SP400) and assessed for continuous production of the natural C-glycoside nothofagin. The overall reaction was 3'-C-ß-glycosylation of the polyphenol phloretin from uridine 5'-diphosphate (UDP)-glucose that was released in situ from sucrose and UDP. Using solid catalyst optimized for total (∼28 mg/g) as well as relative protein loading (CGT/SuSy = ∼1) and assembled into a packed bed (1 ml), we demonstrate flow synthesis of nothofagin (up to 52 mg/ml; 120 mM) from phloretin (≥95% conversion) solubilized by inclusion complexation in hydroxypropyl ß-cyclodextrin. About 1.8 g nothofagin (90 ml; 12-26 mg/ml) were produced continuously over 90 reactor cycles (2.3 h/cycle) with a space-time yield of approximately 11 mg/(ml h) and a total enzyme turnover number of up to 2.9 × 103 mg/mg (=3.8 × 105 mol/mol). The co-immobilized enzymes exhibited useful effectiveness (∼40% of the enzymes in solution), with limitations on the conversion rate arising partly from external liquid-solid mass transfer of UDP under packed-bed flow conditions. The operational half-life of the catalyst (∼200 h; 30°C) was governed by the binding stability of the glycosyltransferases (≤35% loss of activity) on the solid carrier. Collectively, the current study shows integrated process technology for flow synthesis with co-immobilized sugar nucleotide-dependent glycosyltransferases, using efficient glycosylation from sucrose via the internally recycled UDP-glucose. This provides a basis from engineering science to promote glycosyltransferase applications for natural product glycosides and oligosaccharides.


Assuntos
Chalconas , Enzimas Imobilizadas/química , Glicosídeos , Glicosiltransferases/química , Biocatálise , Chalconas/síntese química , Chalconas/química , Glicosídeos/síntese química , Glicosídeos/química , Glicosilação
13.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443487

RESUMO

The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure-activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Chalconas/síntese química , Chalconas/farmacologia , Desenho de Fármacos , Quinolinas/síntese química , Quinolinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Humanos , Quinolinas/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
14.
Carbohydr Polym ; 269: 118333, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294343

RESUMO

Metal-free cost-efficient biocompatible molecules are beneficial for opto-electrochemical bioassays. Herein, chitosan (CS) conjugated butein is prepared via graft polymerization. Structural integrity between radical active sites of CS and its probable conjugation routes with reactive OH group of butein during grafting were comprehensively studied using optical absorbance/emission property, NMR, FT-IR and XPS analysis. Fluorescence emission of CS-conjugated butein (CSB) was studied in dried flaky state as well as in drop casted form. Cyclic voltammetric study of CSB modified glassy carbon electrode exhibits 2e-/2H+ transfer reaction in phosphate buffered saline electrolyte following a surface-confined process with a correlation coefficient of 0.99. Unlike pristine butein, CSB modified electrode display a highly reversible redox behavior under various pH ranging from 4 to 9. For the proof-of-concept CSB-modified flexible screen printed electrodes were processed for electrochemical biosensing of exosomal CD24 specific nucleic acid at an ultralow sample concentration, promising for ovarian cancer diagnosis.


Assuntos
Antígeno CD24/genética , Chalconas/química , Quitosana/análogos & derivados , DNA/análise , Exossomos/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Chalconas/síntese química , Quitosana/síntese química , Sondas de DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Estudo de Prova de Conceito
15.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064448

RESUMO

The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,ß-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.


Assuntos
Antioxidantes/farmacologia , Carboidratos/química , Chalconas/síntese química , Chalconas/farmacologia , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Receptores de Droga/química , Células A549 , Animais , Morte Celular/efeitos dos fármacos , Chalconas/química , Chalconas/farmacocinética , Chlorocebus aethiops , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Termodinâmica , Células Vero , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo
16.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064806

RESUMO

Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole-chalcone hybrids (1-20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Chalconas/farmacologia , Chalconas/farmacocinética , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/farmacocinética , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazóis/síntese química , Tiazóis/química
17.
Bioorg Chem ; 114: 105043, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120019

RESUMO

Screening a natural product library of 850 compounds yield isoliquiritigenin as an effective anti-inflammatory agent by inhibiting the production of pro-inflammatory NO induced by Pam3CSK4, while its activity accompanied by toxicity. Further studies obtained the optimized isoliquiritigenin derivative SMU-B14, which can inhibit Pam3CSK4 triggered toll-like receptor 2 (TLR2) signaling with low toxicity and high potency. Preliminary mechanism studies indicated that SMU-B14 worked through TLR2/MyD88, phosphorylation of IKKα/ß, leading to the reduce degradation of NF-κB related IKBα and p65 complex, then inhibited the production of inflammatory cytokines, such as TNF-α, IL-6, IL-1ß both in human and murine cell lines. Subsequent polarization experiments showed SMU-B14 significant reversed the polarization of M1 phenotype primary macrophage activated by Pam3CSK4in vitro, and reduced the infiltration of neutrophil and polarization of M1-type macrophage, decreased serum alanine transaminase (ALT), as a result protected liver from being injured in vivo. In summary, we obtained an optimized lead compound SMU-B14 and found it functionally blocked TLR2/MyD88/NF-κB signaling pathway to down-regulate the production of inflammatory cytokines resulted significant liver protection property.


Assuntos
Anti-Inflamatórios/uso terapêutico , Polaridade Celular/efeitos dos fármacos , Chalconas/uso terapêutico , Hepatite/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Doença Aguda , Animais , Anti-Inflamatórios/síntese química , Chalconas/síntese química , Citocinas/metabolismo , Hepatite/metabolismo , Hepatite/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Células THP-1
18.
Arch Pharm (Weinheim) ; 354(9): e2100094, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34050547

RESUMO

A novel series of quinoline-based symmetrical and unsymmetrical bis-chalcones was synthesized via a Claisen-Schmidt condensation reaction between 3-formyl-quinoline/quinolone derivatives with acetone or arylidene acetones, respectively, by using KOH/MeOH/H2 O as a reaction medium. Twelve of the obtained compounds were evaluated for their in vitro cytotoxic activity against 60 different human cancer cell lines according to the National Cancer Institute protocol. Among the screened compounds, the symmetrical N-butyl bis-quinolinyl-chalcone 14g and the unsymmetrical quinolinyl-bis-chalcone 17o bearing a 7-chloro-substitution on the N-benzylquinoline moiety and 4-hydroxy-3-methoxy substituent on the phenyl ring, respectively, exhibited the highest overall cytotoxicity against the evaluated cell lines with a GI50 range of 0.16-5.45 µM, with HCT-116 (GI50 = 0.16) and HT29 (GI50 = 0.42 µM) (colon cancer) representing best-case scenarios. Notably, several GI50 values for these compounds were lower than those of the reference drugs doxorubicin and 5-FU. Docking studies performed on selected derivatives yielded very good binding energies in the active site of proteins that participate in key carcinogenic pathways.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Neoplasias/tratamento farmacológico , Quinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Células HCT116 , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
19.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921334

RESUMO

The Friedel-Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron-palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a-3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a-3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Ferro/química , Ácidos de Lewis/química , Paládio/química , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Humanos , Indóis/síntese química , Indóis/química , Concentração Inibidora 50
20.
Bioorg Chem ; 111: 104882, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839582

RESUMO

Building on our previous work that discovered chalcone as a promising pharmacophore for anticancer activity, we have various other chalcone derivatives and have synthesized a series of novel bischalcone to explore their anticancer activity. Among all tested compounds, compounds 6a, 6b, and 6c showed the highest antiproliferative activity against A-549 cancer cell lines with the average IC50 values of 4.18, 4.52, and 5.05 µM, respectively. Moreover, compound 6c showed high antiproliferative activity against the Caco-2 cell line; thus, it was 2- and 4-fold more active than the reference compounds, i.e., methotrexate and capecitabine. Compound 6a also induced cell-cycle arrest in the S phase, whereas compounds 6b and 6c were observed to stop at the G0/G1 phase. Thereafter, we evaluated that compound 6c also had the highest apoptosis/necrosis ratio than other compounds and the standard compound. The anticancer property of the 6c was also supported by molecular docking studies carried out on the EGFR and HER2 receptors. Overall, we expect that these compounds can be further developed for the potential treatment of lung cancer.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA